3.114 \(\int \sqrt {\tan (c+d x)} (a+i a \tan (c+d x)) (A+B \tan (c+d x)) \, dx\)

Optimal. Leaf size=80 \[ \frac {2 \sqrt [4]{-1} a (B+i A) \tan ^{-1}\left ((-1)^{3/4} \sqrt {\tan (c+d x)}\right )}{d}+\frac {2 a (B+i A) \sqrt {\tan (c+d x)}}{d}+\frac {2 i a B \tan ^{\frac {3}{2}}(c+d x)}{3 d} \]

[Out]

2*(-1)^(1/4)*a*(I*A+B)*arctan((-1)^(3/4)*tan(d*x+c)^(1/2))/d+2*a*(I*A+B)*tan(d*x+c)^(1/2)/d+2/3*I*a*B*tan(d*x+
c)^(3/2)/d

________________________________________________________________________________________

Rubi [A]  time = 0.12, antiderivative size = 80, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 34, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.118, Rules used = {3592, 3528, 3533, 205} \[ \frac {2 \sqrt [4]{-1} a (B+i A) \tan ^{-1}\left ((-1)^{3/4} \sqrt {\tan (c+d x)}\right )}{d}+\frac {2 a (B+i A) \sqrt {\tan (c+d x)}}{d}+\frac {2 i a B \tan ^{\frac {3}{2}}(c+d x)}{3 d} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[Tan[c + d*x]]*(a + I*a*Tan[c + d*x])*(A + B*Tan[c + d*x]),x]

[Out]

(2*(-1)^(1/4)*a*(I*A + B)*ArcTan[(-1)^(3/4)*Sqrt[Tan[c + d*x]]])/d + (2*a*(I*A + B)*Sqrt[Tan[c + d*x]])/d + ((
(2*I)/3)*a*B*Tan[c + d*x]^(3/2))/d

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 3528

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(d
*(a + b*Tan[e + f*x])^m)/(f*m), x] + Int[(a + b*Tan[e + f*x])^(m - 1)*Simp[a*c - b*d + (b*c + a*d)*Tan[e + f*x
], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && GtQ[m, 0]

Rule 3533

Int[((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])/Sqrt[(b_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[(2*c^2)/f, S
ubst[Int[1/(b*c - d*x^2), x], x, Sqrt[b*Tan[e + f*x]]], x] /; FreeQ[{b, c, d, e, f}, x] && EqQ[c^2 + d^2, 0]

Rule 3592

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(
e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(B*d*(a + b*Tan[e + f*x])^(m + 1))/(b*f*(m + 1)), x] + Int[(a + b*Tan[e
 + f*x])^m*Simp[A*c - B*d + (B*c + A*d)*Tan[e + f*x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b
*c - a*d, 0] &&  !LeQ[m, -1]

Rubi steps

\begin {align*} \int \sqrt {\tan (c+d x)} (a+i a \tan (c+d x)) (A+B \tan (c+d x)) \, dx &=\frac {2 i a B \tan ^{\frac {3}{2}}(c+d x)}{3 d}+\int \sqrt {\tan (c+d x)} (a (A-i B)+a (i A+B) \tan (c+d x)) \, dx\\ &=\frac {2 a (i A+B) \sqrt {\tan (c+d x)}}{d}+\frac {2 i a B \tan ^{\frac {3}{2}}(c+d x)}{3 d}+\int \frac {-a (i A+B)+a (A-i B) \tan (c+d x)}{\sqrt {\tan (c+d x)}} \, dx\\ &=\frac {2 a (i A+B) \sqrt {\tan (c+d x)}}{d}+\frac {2 i a B \tan ^{\frac {3}{2}}(c+d x)}{3 d}+\frac {\left (2 a^2 (i A+B)^2\right ) \operatorname {Subst}\left (\int \frac {1}{-a (i A+B)-a (A-i B) x^2} \, dx,x,\sqrt {\tan (c+d x)}\right )}{d}\\ &=\frac {2 \sqrt [4]{-1} a (i A+B) \tan ^{-1}\left ((-1)^{3/4} \sqrt {\tan (c+d x)}\right )}{d}+\frac {2 a (i A+B) \sqrt {\tan (c+d x)}}{d}+\frac {2 i a B \tan ^{\frac {3}{2}}(c+d x)}{3 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 2.09, size = 112, normalized size = 1.40 \[ \frac {2 a \sqrt {\tan (c+d x)} \left (\sqrt {i \tan (c+d x)} (3 i A+i B \tan (c+d x)+3 B)+(-3 B-3 i A) \tanh ^{-1}\left (\sqrt {\frac {-1+e^{2 i (c+d x)}}{1+e^{2 i (c+d x)}}}\right )\right )}{3 d \sqrt {i \tan (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[Tan[c + d*x]]*(a + I*a*Tan[c + d*x])*(A + B*Tan[c + d*x]),x]

[Out]

(2*a*Sqrt[Tan[c + d*x]]*(((-3*I)*A - 3*B)*ArcTanh[Sqrt[(-1 + E^((2*I)*(c + d*x)))/(1 + E^((2*I)*(c + d*x)))]]
+ Sqrt[I*Tan[c + d*x]]*((3*I)*A + 3*B + I*B*Tan[c + d*x])))/(3*d*Sqrt[I*Tan[c + d*x]])

________________________________________________________________________________________

fricas [B]  time = 0.60, size = 368, normalized size = 4.60 \[ -\frac {3 \, {\left (d e^{\left (2 i \, d x + 2 i \, c\right )} + d\right )} \sqrt {\frac {{\left (4 i \, A^{2} + 8 \, A B - 4 i \, B^{2}\right )} a^{2}}{d^{2}}} \log \left (\frac {{\left (2 \, {\left (A - i \, B\right )} a e^{\left (2 i \, d x + 2 i \, c\right )} + {\left (d e^{\left (2 i \, d x + 2 i \, c\right )} + d\right )} \sqrt {\frac {{\left (4 i \, A^{2} + 8 \, A B - 4 i \, B^{2}\right )} a^{2}}{d^{2}}} \sqrt {\frac {-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}}\right )} e^{\left (-2 i \, d x - 2 i \, c\right )}}{{\left (i \, A + B\right )} a}\right ) - 3 \, {\left (d e^{\left (2 i \, d x + 2 i \, c\right )} + d\right )} \sqrt {\frac {{\left (4 i \, A^{2} + 8 \, A B - 4 i \, B^{2}\right )} a^{2}}{d^{2}}} \log \left (\frac {{\left (2 \, {\left (A - i \, B\right )} a e^{\left (2 i \, d x + 2 i \, c\right )} - {\left (d e^{\left (2 i \, d x + 2 i \, c\right )} + d\right )} \sqrt {\frac {{\left (4 i \, A^{2} + 8 \, A B - 4 i \, B^{2}\right )} a^{2}}{d^{2}}} \sqrt {\frac {-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}}\right )} e^{\left (-2 i \, d x - 2 i \, c\right )}}{{\left (i \, A + B\right )} a}\right ) - {\left ({\left (24 i \, A + 32 \, B\right )} a e^{\left (2 i \, d x + 2 i \, c\right )} + {\left (24 i \, A + 16 \, B\right )} a\right )} \sqrt {\frac {-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}}}{12 \, {\left (d e^{\left (2 i \, d x + 2 i \, c\right )} + d\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)^(1/2)*(a+I*a*tan(d*x+c))*(A+B*tan(d*x+c)),x, algorithm="fricas")

[Out]

-1/12*(3*(d*e^(2*I*d*x + 2*I*c) + d)*sqrt((4*I*A^2 + 8*A*B - 4*I*B^2)*a^2/d^2)*log((2*(A - I*B)*a*e^(2*I*d*x +
 2*I*c) + (d*e^(2*I*d*x + 2*I*c) + d)*sqrt((4*I*A^2 + 8*A*B - 4*I*B^2)*a^2/d^2)*sqrt((-I*e^(2*I*d*x + 2*I*c) +
 I)/(e^(2*I*d*x + 2*I*c) + 1)))*e^(-2*I*d*x - 2*I*c)/((I*A + B)*a)) - 3*(d*e^(2*I*d*x + 2*I*c) + d)*sqrt((4*I*
A^2 + 8*A*B - 4*I*B^2)*a^2/d^2)*log((2*(A - I*B)*a*e^(2*I*d*x + 2*I*c) - (d*e^(2*I*d*x + 2*I*c) + d)*sqrt((4*I
*A^2 + 8*A*B - 4*I*B^2)*a^2/d^2)*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1)))*e^(-2*I*d*x - 2
*I*c)/((I*A + B)*a)) - ((24*I*A + 32*B)*a*e^(2*I*d*x + 2*I*c) + (24*I*A + 16*B)*a)*sqrt((-I*e^(2*I*d*x + 2*I*c
) + I)/(e^(2*I*d*x + 2*I*c) + 1)))/(d*e^(2*I*d*x + 2*I*c) + d)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int {\left (B \tan \left (d x + c\right ) + A\right )} {\left (i \, a \tan \left (d x + c\right ) + a\right )} \sqrt {\tan \left (d x + c\right )}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)^(1/2)*(a+I*a*tan(d*x+c))*(A+B*tan(d*x+c)),x, algorithm="giac")

[Out]

integrate((B*tan(d*x + c) + A)*(I*a*tan(d*x + c) + a)*sqrt(tan(d*x + c)), x)

________________________________________________________________________________________

maple [B]  time = 0.10, size = 475, normalized size = 5.94 \[ \frac {2 i a B \left (\tan ^{\frac {3}{2}}\left (d x +c \right )\right )}{3 d}+\frac {2 i a A \left (\sqrt {\tan }\left (d x +c \right )\right )}{d}+\frac {2 a B \left (\sqrt {\tan }\left (d x +c \right )\right )}{d}-\frac {i a A \sqrt {2}\, \arctan \left (-1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )}{2 d}-\frac {i a A \sqrt {2}\, \ln \left (\frac {1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}{1-\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}\right )}{4 d}-\frac {i a A \sqrt {2}\, \arctan \left (1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )}{2 d}-\frac {a B \sqrt {2}\, \arctan \left (-1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )}{2 d}-\frac {a B \sqrt {2}\, \ln \left (\frac {1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}{1-\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}\right )}{4 d}-\frac {a B \sqrt {2}\, \arctan \left (1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )}{2 d}-\frac {i a B \sqrt {2}\, \arctan \left (-1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )}{2 d}-\frac {i a B \sqrt {2}\, \ln \left (\frac {1-\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}{1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}\right )}{4 d}-\frac {i a B \sqrt {2}\, \arctan \left (1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )}{2 d}+\frac {a A \sqrt {2}\, \arctan \left (-1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )}{2 d}+\frac {a A \sqrt {2}\, \ln \left (\frac {1-\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}{1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}\right )}{4 d}+\frac {a A \sqrt {2}\, \arctan \left (1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )}{2 d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tan(d*x+c)^(1/2)*(a+I*a*tan(d*x+c))*(A+B*tan(d*x+c)),x)

[Out]

2/3*I*a*B*tan(d*x+c)^(3/2)/d+2*I/d*a*A*tan(d*x+c)^(1/2)+2/d*a*B*tan(d*x+c)^(1/2)-1/2*I/d*a*A*2^(1/2)*arctan(-1
+2^(1/2)*tan(d*x+c)^(1/2))-1/4*I/d*a*A*2^(1/2)*ln((1+2^(1/2)*tan(d*x+c)^(1/2)+tan(d*x+c))/(1-2^(1/2)*tan(d*x+c
)^(1/2)+tan(d*x+c)))-1/2*I/d*a*A*2^(1/2)*arctan(1+2^(1/2)*tan(d*x+c)^(1/2))-1/2/d*a*B*2^(1/2)*arctan(-1+2^(1/2
)*tan(d*x+c)^(1/2))-1/4/d*a*B*2^(1/2)*ln((1+2^(1/2)*tan(d*x+c)^(1/2)+tan(d*x+c))/(1-2^(1/2)*tan(d*x+c)^(1/2)+t
an(d*x+c)))-1/2/d*a*B*2^(1/2)*arctan(1+2^(1/2)*tan(d*x+c)^(1/2))-1/2*I/d*a*B*2^(1/2)*arctan(-1+2^(1/2)*tan(d*x
+c)^(1/2))-1/4*I/d*a*B*2^(1/2)*ln((1-2^(1/2)*tan(d*x+c)^(1/2)+tan(d*x+c))/(1+2^(1/2)*tan(d*x+c)^(1/2)+tan(d*x+
c)))-1/2*I/d*a*B*2^(1/2)*arctan(1+2^(1/2)*tan(d*x+c)^(1/2))+1/2/d*a*A*2^(1/2)*arctan(-1+2^(1/2)*tan(d*x+c)^(1/
2))+1/4/d*a*A*2^(1/2)*ln((1-2^(1/2)*tan(d*x+c)^(1/2)+tan(d*x+c))/(1+2^(1/2)*tan(d*x+c)^(1/2)+tan(d*x+c)))+1/2/
d*a*A*2^(1/2)*arctan(1+2^(1/2)*tan(d*x+c)^(1/2))

________________________________________________________________________________________

maxima [B]  time = 1.71, size = 170, normalized size = 2.12 \[ -\frac {-8 i \, B a \tan \left (d x + c\right )^{\frac {3}{2}} - 8 \, {\left (3 i \, A + 3 \, B\right )} a \sqrt {\tan \left (d x + c\right )} + 3 \, {\left (2 \, \sqrt {2} {\left (\left (i - 1\right ) \, A + \left (i + 1\right ) \, B\right )} \arctan \left (\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} + 2 \, \sqrt {\tan \left (d x + c\right )}\right )}\right ) + 2 \, \sqrt {2} {\left (\left (i - 1\right ) \, A + \left (i + 1\right ) \, B\right )} \arctan \left (-\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} - 2 \, \sqrt {\tan \left (d x + c\right )}\right )}\right ) - \sqrt {2} {\left (-\left (i + 1\right ) \, A + \left (i - 1\right ) \, B\right )} \log \left (\sqrt {2} \sqrt {\tan \left (d x + c\right )} + \tan \left (d x + c\right ) + 1\right ) + \sqrt {2} {\left (-\left (i + 1\right ) \, A + \left (i - 1\right ) \, B\right )} \log \left (-\sqrt {2} \sqrt {\tan \left (d x + c\right )} + \tan \left (d x + c\right ) + 1\right )\right )} a}{12 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)^(1/2)*(a+I*a*tan(d*x+c))*(A+B*tan(d*x+c)),x, algorithm="maxima")

[Out]

-1/12*(-8*I*B*a*tan(d*x + c)^(3/2) - 8*(3*I*A + 3*B)*a*sqrt(tan(d*x + c)) + 3*(2*sqrt(2)*((I - 1)*A + (I + 1)*
B)*arctan(1/2*sqrt(2)*(sqrt(2) + 2*sqrt(tan(d*x + c)))) + 2*sqrt(2)*((I - 1)*A + (I + 1)*B)*arctan(-1/2*sqrt(2
)*(sqrt(2) - 2*sqrt(tan(d*x + c)))) - sqrt(2)*(-(I + 1)*A + (I - 1)*B)*log(sqrt(2)*sqrt(tan(d*x + c)) + tan(d*
x + c) + 1) + sqrt(2)*(-(I + 1)*A + (I - 1)*B)*log(-sqrt(2)*sqrt(tan(d*x + c)) + tan(d*x + c) + 1))*a)/d

________________________________________________________________________________________

mupad [B]  time = 7.71, size = 99, normalized size = 1.24 \[ \frac {A\,a\,\sqrt {\mathrm {tan}\left (c+d\,x\right )}\,2{}\mathrm {i}}{d}+\frac {2\,B\,a\,\sqrt {\mathrm {tan}\left (c+d\,x\right )}}{d}+\frac {B\,a\,{\mathrm {tan}\left (c+d\,x\right )}^{3/2}\,2{}\mathrm {i}}{3\,d}-\frac {2\,{\left (-1\right )}^{1/4}\,A\,a\,\mathrm {atanh}\left ({\left (-1\right )}^{1/4}\,\sqrt {\mathrm {tan}\left (c+d\,x\right )}\right )}{d}+\frac {\sqrt {2}\,B\,a\,\mathrm {atan}\left (\sqrt {2}\,\sqrt {\mathrm {tan}\left (c+d\,x\right )}\,\left (\frac {1}{2}-\frac {1}{2}{}\mathrm {i}\right )\right )\,\left (-1-\mathrm {i}\right )}{d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tan(c + d*x)^(1/2)*(A + B*tan(c + d*x))*(a + a*tan(c + d*x)*1i),x)

[Out]

(A*a*tan(c + d*x)^(1/2)*2i)/d + (2*B*a*tan(c + d*x)^(1/2))/d + (B*a*tan(c + d*x)^(3/2)*2i)/(3*d) - (2*(-1)^(1/
4)*A*a*atanh((-1)^(1/4)*tan(c + d*x)^(1/2)))/d - (2^(1/2)*B*a*atan(2^(1/2)*tan(c + d*x)^(1/2)*(1/2 - 1i/2))*(1
 + 1i))/d

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ i a \left (\int A \tan ^{\frac {3}{2}}{\left (c + d x \right )}\, dx + \int B \tan ^{\frac {5}{2}}{\left (c + d x \right )}\, dx + \int \left (- i A \sqrt {\tan {\left (c + d x \right )}}\right )\, dx + \int \left (- i B \tan ^{\frac {3}{2}}{\left (c + d x \right )}\right )\, dx\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)**(1/2)*(a+I*a*tan(d*x+c))*(A+B*tan(d*x+c)),x)

[Out]

I*a*(Integral(A*tan(c + d*x)**(3/2), x) + Integral(B*tan(c + d*x)**(5/2), x) + Integral(-I*A*sqrt(tan(c + d*x)
), x) + Integral(-I*B*tan(c + d*x)**(3/2), x))

________________________________________________________________________________________